One important property related to spectrum of irrational number bigger 1.
https://www.linkedin.com/feed/update/urn:li:activity:7090662660945403904?
utm_source=share\&utm_medium=member_desktop
We define the spectrum of number $x \in \mathbb{R}$ as the following multiset
$\operatorname{Spec}(x)=\{\lfloor x\rfloor,\lfloor 2 x\rfloor,\lfloor 3 x\rfloor,\lfloor 4 x\rfloor, \ldots\}$.
Prove that $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ partition \mathbb{N} i.e. that each natural number is an element of exactly one of these sets.

Solution by Arkady Alt, San Jose, California, USA.

Lemma.
If x irrational number and $x>1$ then mapping $n \mapsto[n x]: \mathbb{N} \rightarrow \mathbb{N}$ is injection.

Proof.

Suppose that there are $n \neq m$ such that $\lfloor n x\rfloor=\lfloor m x\rfloor$ then $0=\lfloor n x\rfloor-\lfloor m x\rfloor=$ $(n-m) x+\{m x\}-\{n x\} \Leftrightarrow(n-m) x=\{n x\}-\{m x\} \Rightarrow|n-m| x=|\{m x\}-\{n x\}|$.
Since $|\{m x\}-\{n x\}|<1$ and $1 \leq|n-m|$ then $x \leq|n-m| x<1$, i.e. contradiction.
From the Lemma immediately follow that for any irrational $x>1$ multiset $\operatorname{Spec}(x)$ is a regular set and sequence $(\lfloor n x\rfloor)_{n \in \mathbb{N}}$ is strictly increasing.
Theorem.
If α and β are positive irrational numbers such that $\frac{1}{\alpha}+\frac{1}{\beta}=1$ then
i. $\operatorname{Spec}(\alpha) \cap \operatorname{Spec}(\beta)=\varnothing$;
ii. $\operatorname{Spec}(\alpha) \cup \operatorname{Spec}(\beta)=\mathbb{N}$.

Proof.

First note that $\alpha, \beta>0$ and $\frac{1}{\alpha}+\frac{1}{\beta}=1$ implies $\alpha, \beta>1$.
i. Suppose that there are two natural numbers n and m such that $[n \alpha]=[m \beta]$.

Let $p:=[n \alpha]=[m \beta]$ then $\left\{\begin{array}{l}p<n \alpha<p+1 \\ p<m \beta<p+1\end{array} \Leftrightarrow\left\{\begin{array}{l}\frac{n}{p+1}<\frac{1}{\alpha}<\frac{n}{p} \\ \frac{m}{p+1}<\frac{1}{\beta}<\frac{m}{p}\end{array} \Rightarrow\right.\right.$
$\frac{n}{p+1}+\frac{m}{p+1}<\frac{1}{\alpha}+\frac{1}{\beta}<\frac{n}{p}+\frac{m}{p} \Leftrightarrow \frac{n+m}{p+1}<1<\frac{n+m}{p} \Rightarrow p<n+m<p+1$.
But this is the contradiction, because interval ($p, p+1$) not contains integer numbers.
ii. Assume that exist $p \in \mathbb{N} \backslash(\operatorname{Spec}(\alpha) \cup \operatorname{Spec}(\beta))$, i.e. $p \neq[n \alpha]$ and $p \neq[m \beta]$ for any $n, m \in \mathbb{N}$. Since sequences $(\lfloor n \alpha\rfloor)_{n \in \mathbb{N}}$ and $(\lfloor n \beta\rfloor)_{n \in \mathbb{N}}$ are strictly increasing then there are $n, m \in \mathbb{N}$ such that $\left\{\begin{array}{c}{[n \alpha]<p<[(n+1) \alpha]} \\ {[m \beta]<p<[(m+1) \beta]}\end{array}\right.$.
Since can't be $[n \alpha]<p<n \alpha$ because there is no integers between $[n \alpha]$ and $n \alpha$ we have $n \alpha<p<[(n+1) \alpha] \Leftrightarrow\left\{\begin{array}{c}n \alpha<p \\ p+1 \leq[(n+1) \alpha]\end{array} \Rightarrow\left\{\begin{array}{c}n \alpha<p \\ p+1<(n+1) \alpha\end{array}\right.\right.$. ($p \neq[n \alpha], n \in \mathbb{N}$ by supposition and $p \neq n \alpha, n \in \mathbb{N}$ because α irrational).

Analogically, $[m \beta]<p<[(m+1) \beta] \Rightarrow\left\{\begin{array}{c}m \beta<p \\ p+1<(m+1) \beta\end{array}\right.$
Hence, $\frac{n}{p}<\frac{1}{\alpha}<\frac{n+1}{p+1}$ and $\frac{m}{p}<\frac{1}{\beta}<\frac{m+1}{p+1}$ and that implies $\frac{n}{p}+\frac{m}{p}<\frac{1}{\alpha}+\frac{1}{\beta}<\frac{n+1}{p+1}+\frac{m+1}{p+1} \Leftrightarrow \frac{n+m}{p}<1<\frac{n+m+2}{p+1} \Leftrightarrow$
$\left\{\begin{array}{c}n+m<p \\ p+1<n+m+2\end{array} \Leftrightarrow n+m<p<n+m+1\right.$. That is the contradiction.
In particular, since $\frac{1}{\sqrt{2}}+\frac{1}{2+\sqrt{2}}=1$ then $\operatorname{Spec}(\sqrt{2}) \cap \operatorname{Spec}(2+\sqrt{2})=\varnothing$ and $\operatorname{Spec}(\sqrt{2}) \cup \operatorname{Spec}(2+\sqrt{2})=\mathbb{N}$.

